The immediate effect of HCM causing actin mutants E99K and A230V on actin-Tm-myosin interaction in thin-filament reconstituted myocardium.

نویسندگان

  • Fan Bai
  • Hannah M Caster
  • John F Dawson
  • Masataka Kawai
چکیده

Human cardiac actin mutants E99K and A230V were expressed with baculovirus/insect cells and used to reconstitute the thin-filament of bovine cardiac (BVC) muscle fibers, together with tropomyosin (Tm) and troponin (Tn) purified from bovine ventricles. Effects of [Ca(2+)], [ATP], and [phosphate] on tension and its transients were studied at 25°C. In the absence of Tm/Tn, both mutants significantly decreased the tension of actin filament reconstituted fibers (WT: 0.75±0.06 T0, E99K: 0.58±0.04 T0, A230V: 0.58±0.03 T0), where T0 is active tension of native fibers (T0=26.9±1.1kPa, N=41), indicating diminished actin-myosin interactions. However, in the presence of Tm and Tn, WT, E99K, and A230V recovered tension (0.85±0.06 T0, 0.89±0.06 T0, and 0.85±0.05 T0, respectively), demonstrating the compensatory effect of Tm/Tn. Ca(2+) sensitivity (pCa50) increased (5.59±0.02, 5.80±0.03, 5.77±0.03, respectively) and cooperativity (nH) decreased (2.6±0.3, 1.87±0.21, 1.60±0.11, respectively). The kinetic constants of the cross-bridge cycle were deduced using sinusoidal analysis. E99K did not show any significant changes in any of the kinetic constants compared to those of WT. A230V caused a decrease in K1 (ATP association constant), k2 and k-2 (rate constants of the cross-bridge detachment step). The cross-bridge distribution was similar among WT, E99K, and A230V. In conclusion, our experiments demonstrate that the first step of HCM pathogenesis with E99K is increased pCa50 and decreased nH, which result in larger tension during partial activation to cause a diastolic problem. The effect on nH is more severe with A230V. In addition, A230V has a problem of decreased cross-bridge kinetics, which affects the normal functions of the cross-bridge cycle and may contribute to the first step of the HCM pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human actin mutations associated with hypertrophic and dilated cardiomyopathies demonstrate distinct thin filament regulatory properties in vitro.

Two cardiomyopathic mutations were expressed in human cardiac actin, using a Baculovirus/insect cell system; E99K is associated with hypertrophic cardiomyopathy whereas R312H is associated with dilated cardiomyopathy. The hypothesis that the divergent phenotypes of these two cardiomyopathies are associated with fundamental differences in the molecular mechanics and thin filament regulation of t...

متن کامل

Structural and protein interaction effects of hypertrophic and dilated cardiomyopathic mutations in alpha-tropomyosin

The potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction ...

متن کامل

Tropomyosin Period 3 Is Essential for Enhancement of Isometric Tension in Thin Filament-Reconstituted Bovine Myocardium

Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as "periods," and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Delta2Tm) or period 3 (Delta3Tm) was deleted. We then st...

متن کامل

Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (HCM) can be caused by dominant missense mutations in cardiac troponin T (TnT), alpha-tropomyosin, C-protein, or cardiac myosin heavy chain genes. The myosin mutations are known to impair function, but any functional consequences of the TnT mutations are unknown. This report describes the in vitro function of troponin containing an IIe91Asn mutation in rat c...

متن کامل

Investigation of a Truncated Cardiac Troponin T That Causes Familial Hypertrophic Cardiomyopathy Ca Regulatory Properties of Reconstituted Thin Filaments Depend on the Ratio of Mutant to Wild-Type Protein

Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in at least 8 contractile protein genes, most commonly b myosin heavy chain, myosin binding protein C, and cardiac troponin T. Affected individuals are heterozygous for a particular mutation, and most evidence suggests that the mutant protein acts in a dominant-negative fashion. To investigate the functional properties of a trunc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular and cellular cardiology

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2015